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ABSTRACT In this paper, a computer-vision-assisted simulation method is proposed to address the issue
of training dataset acquisition for wireless hand gesture recognition. In the existing literature, in order to
classify gestures via the wireless channel estimation, massive training samples should be measured in a
consistent environment, consuming significant efforts. In the proposed CASTER simulator, however, the
training dataset can be simulated via existing videos. Particularly, in the channel simulation, a gesture is
represented by a sequence of snapshots, and the channel impulse response of each snapshot is calculated
via tracing the rays scattered off a primitive-based hand model. Moreover, CASTER simulator relies on
the existing video clips to extract the motion data of gestures. Thus, the massive measurements of wireless
channel can be eliminated. The experiments first demonstrate an 83.0% average recognition accuracy of
simulation-to-reality inference in recognizing 5 categories of gestures. Moreover, this accuracy can be
boosted to 96.5% via the method of transfer learning.

INDEX TERMS Wireless hand gesture recognition, channel model, simulation-to-reality inference.

I. INTRODUCTION

SENSING is becoming one of the core services of the
next-generation wireless systems. There have been a

significant number of works on wireless sensing, particu-
larly the machine-learning-based human motion recognition
(HMR), via channel state information (CSI) [1], [2], [3],
[4] or passive architecture [5], [6], [7]. In most of these
works, a significant number of labeled wireless signals
should be collected and processed for the training of motion
recognition models, which might be infeasible in many
applications. In this paper, we would like to show that it
is possible to generate the above training dataset for hand
gesture recognition via channel simulation, instead of real
measurement.
In fact, there have been a number of works on the

extension of sophisticated communication channel models,

such that the effects of sensing target on the channel
impulse response are incorporated. Hence, the channel
simulation based on these models might be used for motion
recognition. For instance, the Data-Driven Hybrid Channel
(DAHC) model of IEEE 802.11bf specification [8], [9]
divided wireless channel into two parts: the target-unrelated
components and the target-related components. The existing
methods of communication channel modeling can be applied
on the former; whereas the primitive-based human body
model [10] was utilized to compute the latter. A similar
channel model was also used in [11] for the optimization
of communication and sensing performance. The WiGig
Tools [12], developed by National Institute of Standards and
Technology (NIST), enriched existing quasi-deterministic
channel ray-tracers with supplementary target-related rays
(T-Rays), such that the consistent effects of human motion
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could be included. Moreover, the methods for simulating
radar echo signals off the human body were proposed
in [13], [14]. All the above works relied on the primitive-
based human body model [10], [15], where the hand was
modeled as a single ellipsoid. Thus, these methods cannot
model fine-grained hand gestures.
In order to facilitate the machine-learning-based HMRwith

the above channel models, diversified motion data are required
to drive the primitive-based human body model in the channel
simulation. Depth cameras and wearable sensors were used
in [13], [14] to obtain sufficient body motion data for channel
simulation. Nevertheless, to the best of our knowledge, there
is no study on the capture of hand gestures for channel
simulation.Moreover, it is unknown if conventionalmonocular
cameras, instead of depth cameras, could obtain the motion
data with adequate accuracy in the applications of wireless
HMR. Note that the monocular cameras are of lower cost,
and it is much more convenient to obtain hand gesture video
clips of monocular cameras from online sources.
In this paper, we would like to shed some light on

the above issues by proposing a Computer-vision-Assisted
wireless channel SimulaTor for gEsture Recognition, namely
CASTER. The proposed CASTER simulator is composed of
channel generator and video gesture catcher. In the channel
generator, the target hand is modeled with 21 primitives,
and the channel impulse response is calculated by tracing
the rays scattered off all the primitives. Based on the hand
model, a gesture is represented by a sequence of snapshots,
and the channel impulse responses for all the snapshots
can be obtained respectively. In the video gesture catcher,
trajectories of 21 primitives in one gesture can be captured
from videos of a conventional monocular camera. Thus,
the catcher provides an efficient way to retrieve motion
data for the channel generator. In order to demonstrate
the high fidelity of the proposed CASTER simulator, we
use the simulated dataset of channel impulse responses
to train a gesture recognition model and use a passive
sensing system [7] to measure the real channel for model
testing. It is shown that an 83.0% average recognition
accuracy of simulation-to-reality inference can be achieved
by recognizing 5 categories of gestures. Moreover, this
accuracy can be boosted to 96.5% via the method of
transfer learning [16], where the gesture recognition model
trained via a simulated dataset is further fine-tuned with a
small amount of unlabeled real measurements according to
the adversarial discriminative domain adaptation (ADDA)
method in [17]. The main advantages of the proposed
CASTER simulator are summarized below:
• Conventional measurement of training dataset for wire-
less HMR is replaced by channel simulation and gesture
video recognition, saving the significant cost of real
experiments.

• In the proposed CASTER simulator, the locations of
the signal transmitter, sensing receiver, target hand, and
scattering clusters can be adjusted freely to adapt to
heterogeneous sensing scenarios.

As a result, the proposed CASTER simulator has the
potential to customize the gesture recognition models for
heterogeneous scenarios without real measurements.
The remainder of this paper is organized as follows. The

simulator framework is elaborated in Section II. The channel
generator is presented in Section III, and the video gesture
catcher is presented in Section IV. The performance of the
CASTER simulator is evaluated in Section V. Finally, the
conclusion is drawn in Section VI.
In this paper, we use the following notations: non-bold

letters are used to denote scalar values, bold lowercase letters
(e.g., a) are used to denote column vectors, bold uppercase
letters (e.g., A) are used to denote matrices, |a| and aT

denote the L2-norm and transpose of vector a.

II. SIMULATOR FRAMEWORK
The proposed CASTER simulator is developed with the
primitive-based hand model. In order to extract high-
fidelity channel impulse responses from existing videos, the
CASTER simulator is composed of the channel generator
and video gesture catcher. The former generates a sequence
of channel impulse response snapshots given arbitrary hand
gestures and arbitrary locations of the transmitter and
receiver. The latter captures the parameters of real hand
motions from existing videos as the former’s input. As a
result, the CASTER simulator is able to provide datasets for
the training of the hand gesture recognition model without
real channel measurement.
As depicted in Fig. 1, the locations of the transmitter,

receiver and the target hand can be arbitrary in the
channel generator. A gesture is represented as a sequence
of snapshots, with an interval of �ts seconds. In each
snapshot, the channel is assumed to be quasi-static, and the
channel impulse response is calculated via the primitive-
based method [10]. Particularly, the hand is modeled via
21 keypoints (joints) and 21 ellipsoids (primitives) connect-
ing the keypoints. The non-line-of-sight (NLoS) channel
components via the hand can be approximated by the 21
rays respectively scattered off the centers of all primitives.
Hence, the channel impulse response of one snapshot can be
obtained by aggregating all the rays from the transmitter to
the receiver, including the line-of-sight (LoS) ray, the NLoS
ones scattered off the target hand, and the others scattered
at the environment.
As a remark notice, the 21-keypoint hand model is widely

recognized in the fields of computer vision and biomedical
engineering [18]. The renowned hand models, such as
openpose [19], mediaipipe [20], and MANO [21], are all
based on this 21-keypoint representation. It could provide the
same degrees of freedom in describing the complex hand and
finger motions as explained in [18]: a human hand consists
of 21 joints, yielding 27 degrees of freedom, which are the
same as the 21-keypoint hand model.
Moreover, the proposed video gesture catcher first extracts

the 3-dimensional (3D) coordinates of hand keypoints from
each video frame in a local hand world coordination system
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FIGURE 1. Illustration of primitive-based hand model and channel simulation scenario.

via machine learning technique, converts the trajectories of
the keypoints from the local hand world coordinate system
to a global camera coordinate system and then eliminates
the fake hops and jitters of trajectories via low-pass filtering.
Finally, since the interval between two video frames, denoted
as �tv, is usually much larger than �ts, an interpolation is
necessary to fill a sufficient number of snapshots between
two video frames. As a remark, the video clips for the gesture
catcher can be recorded in arbitrary environment as long as
the desired hand gestures can be identified by the gesture
catcher. Hence, they could be obtained from massive online
sources.

III. CHANNEL GENERATOR
Without loss of generality, the generation of channel impulse
response for the t-th snapshot (∀t) is elaborated in this
section. As shown in Fig. 1, the rays from the transmitter
to the receiver can be categorized into two parts: target-
unrelated components and target-related components. The
former refers to the LoS ray and the NLoS rays scattered
at the static environment, and the latter refers to the NLoS
rays scattered off the target hand. Particularly, let h(τ, t) and
u(τ, t) be the overall channel impulse response and target-
related channel impulse response of the t-th snapshot, v(τ )

be time-invariant target-unrelated channel impulse response.
Following the channel model in [9], we have

h(τ, t) = u(τ, t)+ v(τ ), (1)

where the generation of u(τ, t) and v(τ ) is elaborated in the
following parts respectively.

A. TARGET-RELATED CHANNEL COMPONENTS
Let pt and pr be the coordinates of the transmitter and the
receiver respectively, pi(t) and pj(t) be the coordinates of
the two joints associated with the n-th primitive in the t-th
snapshot (∀n, t). Hence, the center of the n-th primitive is
pcn(t) = [pi(t) + pj(t)]/2. As previously mentioned, each

primitive is modeled as an ellipsoid, the length of the axis
connecting the two joints is denoted as 2ln(t), where

ln(t) = |pi(t)− pj(t)|/2. (2)

Moreover, the lengths of the other two axes are identical,
denoted as 2rn(t). Usually, rn(t) < ln(t), and we choose
rn(t) = ln(t)/2. Hence, we shall refer to the axis connecting
the two joints as the long axis of the ellipsoid. As a remark
note that the primitive size (rn and ln) varies slightly over
time due to the non-rigid nature of human motion.
Let Rnt (t) = |pt − pcn(t)| be the distance between the

transmitter and the n-th primitive center, Rnr (t) = |pr−pcn(t)|
be the distance between the receiver and the n-th primitive
center, Gnt (t) and Gnr (t) be the transmit and receive antenna
gains at the directions of incident ray pt−pcn(t) and scattered
ray pcn(t)−pr, σn(t) be the bistatic radar cross section (RCS)
of the n-th primitive, c be the speed of light, fc and λ be the
carrier frequency and wavelength respectively. The response
of the path scattered off the n-th primitive can be expressed
as

un(τ, t) = λ

√
σn(t)Gnt (t)Gnr (t)

(4π)3(Rnt (t)Rnr (t))2 e
−jφn(t)δ(τ − τn(t)), (3)

where δ(a) is the impulse function, whose value is 1 when
a = 0 and 0 otherwise, while τn(t) = [Rnt (t)+ Rnr (t)]/c and
φn(t) = 2π fcτn(t) measure the delay and phase shift.
Moreover, the calculation of the bistatic RCS σn(t) follows

the method in [22], [23]. As depicted in Fig. 2, let θnt (t)
and θnr (t) represent the incident and scattered elevation
angles respectively, φnt (t) and φnr (t) represent the incident
and scattered azimuth angles respectively, vn(t) = [pi(t) −
pj(t)]/(2ln(t)) represent the normalized vector along the long
axis, we have

θnt (t) = arccos
((
pcn(t)− pt

)Tvn(t)/Rnt (t)), (4)

θnr (t) = arccos
((
pcn(t)− pr

)Tvn(t)/Rnr (t)), (5)
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FIGURE 2. Bistatic RCS estimation for the n-th primitive.

and

|φnr (t)− φnt (t)| = arccos

((
pcn(t)− p̃t(t)

)T(pcn(t)− p̃r(t)
)

|pcn(t)− p̃t(t)||pcn(t))− p̃r(t)|

)
,

(6)

where

p̃t(t) = pt − vn(t)
(
pt − pcn(t)

)Tvn(t)
and

p̃r(t) = pr − vn(t)
(
pr − pcn(t)

)Tvn(t)
denotes the projection of the transmitter and receiver’s
locations on the plane containing the center of the n-th
ellipsoid and perpendicular to its long axis in the t-th
snapshot. As a result, the bistatic RCS σn(t) of n-th ellipsoid
in the t-th snapshot is given by (7), shown at the bottom of
the page.
Aggregating the NLoS rays scattered off all the primitives,

the target-related channel impulse response can be written
as

u(τ, t) =
21∑
n=1

un(τ, t). (8)

B. TARGET-UNRELATED CHANNEL COMPONENTS
CASTER simulator models the environment by K static
scatterers. Let the RCS, transmit and receive antenna gains
and the distance of the k-th NLoS ray be σk, Gkt , G

k
r , R

k
t , and

Rkr , respectively. The NLoS components of target-unrelated
channel impulse response can be written as

vNLoS(τ ) =
K∑
k=1

λ

√√√√ σkGktGkr

(4π)3(Rkt Rkr )2 e
−jφkδ(τ − τk), (9)

where τk = (Rkt + Rkr )/c and φk = 2π fcτk.
Moreover, let transmit and receive antenna gains at the

direction of LoS path be Gt, LoS and Gr, LoS, distance between
transmitter and receiver be RLoS, the LoS component of
target-unrelated channel is modeled via the following free
space model:

vLoS(τ ) = λ
√
Gt, LoSGr, LoS

4πRLoS
e−jφLoSδ(τ − τLoS), (10)

where τLoS = RLoS/c and φLoS = 2π fcτLoS. As a
result, according to [9], the target-unrelated channel impulse
response can be written as

v(τ ) = vLoS(τ )+ vNLoS(τ ). (11)

IV. VIDEO GESTURE CATCHER
As mentioned in the previous section, the motion of the target
hand is characterized by the trajectories of the 21 keypoints
in a sequence of snapshots, denoted as pi(t), i = 1, 2, . . . , 21.
We leverage the tool of Mediapipe [20] to extract the
keypoint trajectories from videos of monocular cameras,
where two issues in the conversion are addressed in this
section. The Mediapipe could localize the positions of the
keypoints in each video frame. The positions are represented
in the coordinate system with the origin at the hand center,
namely hand world coordinate system. However, it is difficult
to calculate the Doppler frequency with such coordinate
system, as the hand center is moving. Hence, we first transfer
the coordinates to a unified coordinate system by solving
the Perspective-n-Point (PnP) problem [24], where the fake
hops on the trajectories are smoothed. Moreover, because
there are usually 30 video frames per second, which is not
sufficient for estimating the Doppler frequencies of gesture.
For example, the typical Doppler frequencies of gestures on
the 60 GHz signals are around 800 Hz (assuming a maximum
radial velocity of 4 meters per second), which requests
1600 snapshots per second at least. Hence, interpolation is
introduced such that the channel impulse response can be
generated with a shorter interval.

A. CONVERSION OF COORDINATE SYSTEMS
For the elaboration convenience, we first introduce the
following three coordinate systems. The two-dimensional
(2D) pixel coordinate system in the unit of pixels is used to
identify the positions of hand keypoints in each video frame.
The origin of the pixel coordinate system is usually at the
upper left corner of each frame, as shown in Fig. 3. The
three-dimensional (3D) hand world coordinate system in the
unit of meters measures the positions of hand keypoints in
the real world with respect to the hand center. Moreover,

σn(t) = 4πr4
n(t)l

2
n(t)

[(
1+ cos θnt (t) cos θnr (t)

)
cos
(
φnr (t)− φnt (t)

)+ sin θnt (t) sin θnr (t)
]2[

r2
n(t)

(
sin2 θnt (t)+ sin2 θnr (t)+ 2 sin θnt (t) sin θnr (t) cos(φnr (t)− φnt (t))

)+ l2n(t)(cos θnt (t)+ cos θnr (t)
)2]2

. (7)
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FIGURE 3. Illustration of three coordinate systems.

the 3D camera coordinate system in the unit of meters
measures the positions of hand keypoints with respect to the
static camera lens, which captures the videos. The Mediapipe
is able to identify the 21 keypoints, localize them in the
first two coordinate systems. Because the hand center is
usually in motion and the camera is static, the trajectories in
the camera coordinate system instead of in the hand world
coordinate system, could be used to calculate the Doppler
frequencies. Thus, the coordinates of hand keypoints pi(t),
i = 1, 2, . . . , 21, transmitter pt and receiver pr, defined
in the previous section should be measured in the camera
coordinate system. The above three coordinate systems are
illustrated in Fig. 3, as referenced.

Define the coordinates of the i-th keypoint (i =
1, 2, . . . , 21) in the pixel, hand world and camera coordinate
systems as (ui, vi), (xwi , ywi , zwi ), and (xi, yi, zi), respectively,
where the snapshot index t is ignored in this section for the
simplicity of elaboration. Let f be the focal length in the
unit of pixels, (cx, cy) be the coordinates of image center in
the pixel coordinate system, we define the camera intrinsic
matrix A as

A =
⎡
⎣f 0 cx

0 f cy
0 0 1

⎤
⎦. (12)

Hence, the relation between the 2D pixel and 3D camera
coordinate systems can be expressed as

zi[ui vi 1]T = A
[
xi yi zi

]T
. (13)

Let R ∈ R
3×3 and t be the rotation matrix and

translation vector from hand world coordinate system to
camera coordinate system, we define the camera extrinsic
matrix T and perspective projection matrix 
 as follows:

T =
[

R t
01×3 1

]
, (14)


 = [I3×3 13×1
]
, (15)

where I3×3 denotes a 3× 3 identity matrix, 01×3 and 13×1
are the three-dimensional row and column vectors with all
0 and 1 entries respectively. According to [24], the relations
between the hand world and camera coordinate systems are
given by [

xi yi zi 1
]T = T

[
xwi ywi zwi 1

]T
. (16)

As a result, the relation between the hand world and the
pixel coordinate system could be described as

zi[ui vi 1]T = A
T
[
xwi ywi zwi 1

]T
. (17)

For the elaboration convenience, we denote the projection
from the hand world coordinate system to the pixel coordi-
nate system as the following function P:

[ui vi]
T = P

([
xwi ywi zwi

]T
,R, t,A

)
= 1

zi

[
I2×2 02×1

]
A
(
R
[
xwi ywi zwi

]T + t
)

︸ ︷︷ ︸
=[xi yi zi]T

. (18)

The Mediapipe could provide the coordinates (ui, vi)
and (xwi , ywi , zwi ) of all the keypoints (i = 1, 2, . . . , 21) in
each video frame. Hence, their coordinates in the camera
coordinate system can be calculated with the knowledge of
the rotation matrix R and translation vector t.

In fact, the parameters in the camera intrinsic matrix A can
be measured in advance, the rotation matrix R and translation
vector t can be estimated via (18) for i = 1, 2, . . . , 21.
Particularly, given the coordinates of the 21 keypoints in the
pixel and hand world coordinate systems, the detection of the
rotation matrix R and translation vector t can be formulated
as follows.

min
R,t

21∑
i=1

∣∣∣(ui, vi)− P
([
xwi ywi zwi

]T
,R, t,A

)∣∣∣2,
s.t. R(R)T = I3×3, det(R) = 1, (19)

where det(.) represents the determinant of a matrix.
The above problem is referred to as the Perspective-

n-Point (PnP) problem [24]. It can be solved via the
cv2.solvePnP function from the popular computer vision
library OpenCV [25], where the Levenberg-Marquardt
optimization method [26] is adopted.

B. MOTION SMOOTHING AND SNAPSHOT
INTERPOLATION
Because of the errors of keypoint detection with Mediapipe,
there might be fake hops or jitters in the detected trajectories
of keypoints, which do not exist actually. This will lead to
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FIGURE 4. Comparison of simulated spectrograms via CASTER. (a) before one-euro
filter smoothing; (b) after one-euro filter smoothing.

the false alarm of high Doppler frequencies (as depicted
in Fig. 4). In order to generate a high-fidelity dataset for
gesture recognition model training, a low-pass filter, namely
one-euro filter [27], is proposed to smooth both trajectories
and velocities, followed by snapshot interpolation between
neighboring video frames.
Let qi,k = [xi,k yi,k zi,k]T and q̂i,k = [x̂i,k ŷi,k ẑi,k]T be the

positions of the i-th keypoint in the k-th frame before and
after the low-pass filtering respectively, q̇i,k = [ẋi,k ẏi,k żi,k]T

and ˆ̇qi,k = [ ˆ̇xi,k ˆ̇yi,k ˆ̇zi,k]T be the estimated velocities of the
i-th keypoint in the k-th frame before and after the low-pass
filtering respectively. Initializing q̂i,1 with qi,1, the trajectory
smoothing for the i-th keypoint in the k-th frame is given
by

ôi,k = αi,koi,k +
(
1− αi,k

)
ôi,k−1, ∀i, k ≥ 2 (20)

where the notation o represents the dimensions of x, y and
z, respectively, and

αi,k = 1

1+ 1

2π�tv
(
fcmin+β| ˆ̇oi,k|

)
is the smoothing factor, �tv is the video frame interval, fcmin

is the minimum cutoff frequency, β is the speed coefficient
of update. Moreover, the velocity in the above equation can
be calculated as

ˆ̇oi,k = γ ȯi,k + (1− γ ) ˆ̇oi,k−1, ∀i, k ≥ 2 (21)

where ȯi,k = (oi,k− ôi,k−1)/�tv, ˆ̇oi,1 is initialized with 0, γ

is the fixed smoothing factor.
The overall smoothing procedure via one-euro filter is

illustrated in Alg. 1. In fact, the smoothing of the i-th
keypoint’s velocity ˆ̇oi,k and trajectory ôi,k in the k-th frame is
conducted by repeating two first-order low-pass filters (21)
and (20) to the position and velocity of the i-th keypoint. This
procedure effectively eliminates false hops or jitters in the
detected keypoint trajectories while preserving the motion
features. An example of the smoothing result is shown in
Fig. 4.
Finally, we adopt the cubic spline interpolation

method [28] to insert �tv/�ts − 1 positions of the i-th
keypoint (∀i) between every two neighboring frames (say q̂i,k
and q̂i,k+1, ∀k), and denote the position of the i-th keypoint
in the t-th snapshot as pi(t).

Algorithm 1 One-Euro Low-Path Filter for Keypoint
Trajectory Smoothing
1: Input:

• {qi,k = [xi,k yi,k zi,k]T |i ∈ {1, . . . , 21}, k ∈
{1, . . . ,K}}, where qi,k denotes the location of the
i-th keypoint in the k-th frame.

• fcmin: Minimum cutoff frequency for position.
• β: Speed coefficient.
• γ : Smoothing factor for velocity.
• �tv: Video frame interval.

2: Output:
• {q̂i,k = [x̂i,k ŷi,k ẑi,k]T |i ∈ {1, . . . , 21}, k ∈
{1, . . . ,K}}: where q̂i,k denotes the location of the
i-th keypoint in the k-th frame after smoothing.

3: for k← 2 to K do � Iteration over frames.
4: for i← 1 to 21 do � Iteration over keypoints.
5: for o represents the dimensions of x, y, and z

respectively do
6: ôi,1 ← oi,1, ˆ̇oi,1 ← 0
7: ȯi,k = (oi,k − ôi,k−1)/�tv
8: ˆ̇oi,k = γ ȯi,k + (1− γ ) ˆ̇oi,k−1 � Equation

(21): smooth velocity.
9: αi,k = 1

1+ 1
2π�tv(fcmin+β| ˆ̇oi,k |)

� Update

smoothing factor for position.
10: ôi,k = αi,koi,k + (1− αi,k)ôi,k−1 � Equation

(20): smooth position.
11: end for
12: q̂i,k = [x̂i,k ŷi,k ẑi,k]T

13: end for
14: end for
15: return {q̂i,k = [x̂i,k ŷi,k ẑi,k]T |i ∈ {1, . . . , 21}, k ∈
{1, . . . ,K}}

V. EVALUATION OF CASTER SIMULATOR
In this section, the high fidelity of the CASTER simulator
in the applications of gesture recognition is demonstrated.
Specifically, the generation of gesture datasets via CASTER
simulator and real measurement is first elaborated. Then,
the recognition performance via the above two datasets is
discussed.

A. SIMULATION AND EXPERIMENTAL DATASETS
In order to verify the quality of the dataset generated by
CASTER simulator, 500 clips of videos on 5 gestures,
including “Pushing and Pulling”, “Beckoning”, “Rubbing
Fingers”, “Plugging” (slicing forward with all fingers
together), and “Scaling” (spreading thumb, index finger,
middle finger) were recorded using a normal monocular
camera at a rate of 30 frames per second (fps). The motion
data for hand model is then extracted via the video gesture
catcher.
On the other hand, in the channel generator,

the locations of transmitter, receiver and target hand
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FIGURE 5. Illustration of the simulated and experimental dataset from CASTER, where some examples of spectrogram are plotted.

center are [0m,−0.1m,−1.5m], [0.2m,−0.1m, 0.1m], and
[0m, 0m, 0.4 ∼ 0.8m], respectively. Moreover, in order
to model the target-unrelated channel, K static RCSs are
randomly generated from a normal distribution with a mean
value of 0.005m2 and a standard deviation of 0.001m2.
These RCSs are associated with scatterers that are randomly
located within a 2m × 2m × 2m cuboid centered at the
receiver. The positions of these scatterers are used to
calculate the associated parameters Gkt , G

k
r , R

k
t , and R

k
r .

Thus, 100 sequences of channel impulse responses for
each gesture are obtained via the proposed CASTER
simulator with a sampling rate of 2000 snapshots per second.
Then, one spectrogram, illustrating the Doppler frequency
versus time, is calculated for each video clip (each sequence
of channel impulse responses) by applying the short-time
Fourier transform (STFT) with a window of 0.125 seconds
(250 snapshots). As a result, a simulated dataset of 500
spectrograms for the recognition of 5 gestures is obtained
as illustrated in Fig. 5.

In order to measure the real Doppler spectrum of gestures,
an integrated passive sensing and communication system
working on millimeter wave (mmWave) band is developed
as in our previous work [7]. As illustrated in Fig. 6, at the
transmitter, an NI USRP-2954R [29] is utilized to generate
an intermediate frequency (IF) signal at 500 MHz, which is
subsequently up-converted to 60 GHz and transmitted using
a Sivers 60 GHz phased array [30]. At the receiver, two
phased arrays are connected to a single USRP device to
receive signals from the reference and surveillance channels,
respectively. The transmit mmWave signal is modulated via
orthogonal frequency-division multiplexing (OFDM). The

FIGURE 6. Facilities and scenario of experiment.

carrier frequency is 60.48 GHz and the signal bandwidth is
5 MHz.

In the experiment, the locations of the transmitter and
receiver are consistent with those in the simulator. 100 trials
are measured for each gesture via the passive sensing system.
Following the signal processing in [7], the spectrogram of
hand gestures can be computed through the cross-ambiguity
function (CAF). As a result, an experimental dataset with
100 spectrograms per gesture is obtained, as illustrated in
Fig. 5.

B. PERFORMANCE OF GESTURE RECOGNITION
First of all, it can be observed from Fig. 7 that the
spectrograms from real experiment and CASTER simulator
exhibit similar time-Doppler patterns. To further demonstrate
the high fidelity of the proposed simulator in the applications
of gesture recognition, the following six training and testing
schemes are adopted with the same image recognition model
named ResNet18 [31]:
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FIGURE 7. Spectrogram comparison of 5 gestures generated by CASTER (first row) and the experiment (second row).

FIGURE 8. Gesture recognition accuracy of the 6 training and testing schemes.

• Scheme 1: The training set consists of 60 simulated
spectrograms for each gesture, and the test set consists
of 40 measured ones for each gesture;

• Scheme 2: The training set consists of 50 simulated
spectrograms and 10 measured ones for each gesture,
and the test set consists of 40 measured ones for each
gesture;

• Scheme 3: The training set consists of 40 simulated
spectrograms and 20 measured ones for each gesture,
and the test set consists of 40 measured ones for each
gesture;

• Scheme 4: The training set consists of 30 simulated
spectrograms and 30 measured ones for each gesture,
and the test set consists of 40 measured ones for each
gesture;

• Scheme 5: The training set consists of 60 measured
spectrograms for each gesture, and the test set consists
of 40 measured ones for each gesture;

• Scheme 6: The training set consists of 60 simulated
spectrograms for each gesture, and the test set consists
of 40 simulated ones for each gesture.

The overall results of the gesture recognition are shown in
Fig. 8, and the confusion charts of the 6 schemes are shown
in Fig. 9 respectively. It can be observed that an accuracy of
83.0% (Scheme 1) can be achieved if the simulated dataset
is used for training and the experimental dataset is used

for testing. On the other hand, there is still roughly 16.0%
and 17.0% performance loss compared with the Scheme
5 and 6, indicating that the difference between simulated
and experimental datasets is not negligible. One method to
mitigate such difference is to mix some experimental samples
into the simulated dataset. It can be observed from the results
of Scheme 2, 3, 4 that mixing some experimental samples
could significantly improve the testing accuracy. Moreover,
it can be observed that the enhanced recognition accuracy
converges to 98.5% for Schemes 3 and 4. However, this is
still 0.5% lower than the accuracy achieved with Scheme
5. This difference indicates the inherent feature distinctions
between simulated and experimental datasets.
Furthermore, it is apparent from the Fig. 9(a) that ges-

ture recognition for “beckoning” and “plugging” are not
sufficiently accurate. The recognition accuracy is 70% and
75% respectively. Moreover, 22.5% confusion probability
exists between the gestures of “beckoning” and “pushing
and pulling”, indicating that some of the simulation samples
of “beckoning” are similar to the experimental samples of
“pushing and pulling”.
To qualitatively support the aforementioned observations,

we applied dimensionality reduction techniques to the
extracted features (network output before entering the fully-
connected layer classifier) for the entire simulation and
experimental datasets using the ResNet18 model trained by
Scheme 1. Specifically, t-distributed Stochastic Neighbor
Embedding (t-SNE) [32] and Principal Component Analysis
(PCA) [33] were employed to visualize and analyze the high-
dimensional features (512 dimensions for ResNet18) of the
dataset, as illustrated in Fig. 10. It could be observed that
although 83.0% gesture recognition accuracy is achieved,
the distributions of the features of different gestures are
not sufficiently separated. Moreover, the simulated and
experimental features for the gesture “Scaling” are not
well aligned, indicating the inherent feature distinctions
between simulated and experimental datasets. These could be
regarded as the limitation of the proposed simulator, since the
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FIGURE 9. Confusion charts of the 6 training and testing schemes.

FIGURE 10. t-SNE visualization for the feature spaces of simulation and
experimental datasets. Five gesture categories are distinguished by different colors,
with simulation sample features denoted by star shapes and experimental sample
features represented by solid circle shapes.

real-world channel is more complex than the simulated one
due to the impacts of multipath and the non-ideal hardware.

C. IMPROVEMENT VIA TRANSFER LEARNING
The transfer learning technique [16] is applied in this
part to relieve the above issue of feature distinction. In
this context, the simulated dataset is referred to as the

source domain, and the experimental dataset as the target
domain. The adversarial discriminative domain adaptation
(ADDA) [17] is adopted to align the feature distributions of
the source and target domains. The ResNet18 model trained
by Scheme 1 in the previous part, serves as the source domain
gesture recognition model, and the target domain gesture
recognition model is initialized with the same architecture
and parameters. Then, additional 50 unlabeled experimental
samples are added to the simulated dataset for Scheme 1.
This is used to train a domain discriminator to distinguish the
source and target domain features and fine-tune the feature
extractor part of the target model alternatively, such that the
source feature representation is mimicked. The details of the
ADDA method can be found in [17]. The confusion chart
of the testing result and t-SNE visualization of the feature
spaces in simulation and experimental datasets after ADDA
are shown in Fig. 11. The recognition accuracy is boosted to
96.5% and the feature spaces of simulation and experimental
datasets are well aligned. This result indicates that the feature
distinctions between simulated and experimental datasets can
be mitigated significantly by transfer learning.
It could be observed that the gesture recognition accuracy

after the transfer learning (96.5%) is still lower than that of
Scheme 2 (97.5%). This is mainly because in the transfer
learning of Scheme 1, the 50 measured data samples are
all unlabeled, while Scheme 2 uses labeled experimental
and simulated samples. In fact, without the recognition of
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FIGURE 11. Gesture recognition result after ADDA. (a) confusion chart of simulation-to-reality inference; (b) t-SNE visualization of the feature spaces in simulation and
experimental datasets.

experimental samples, the unsupervised transfer learning of
Scheme 1 would be more practical than Scheme 2, which
trains the model with labeled simulated and experimental
samples.

VI. CONCLUSION
In this paper, a computer-vision assisted wireless channel
simulator, namely CASTER simulator, is proposed to gen-
erate high-fidelity dataset for hand gesture recognition. In
the simulator, the target hand is modeled by 21 ellipsoid
primitives, and the ray-tracing method is adopted to calculate
the channel impulse responses. Moreover, a video gesture
catcher is proposed to capture real motion data of gestures.
In the experiments with 5 different gestures, both real dataset
via experiment and simulated dataset via CASTER simulator
are obtained. An accuracy of 83.0% can be achieved in
simulation-to-reality inference, i.e., using simulated and
experimental datasets in model training and inference respec-
tively. Moreover, this accuracy can be boosted to 96.5%
by transfer learning, i.e., fine-tuning the gesture recognition
model with a few unlabeled real data.
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